An alternate mathematical model for single-wall carbon nanotubes

Nicolae Cotfas*
Faculty of Physics, University of Bucharest, PO Box 76-54, Postal Office 76, Bucharest, Romania
Received 6 March 2004; accepted 13 December 2004
Available online 11 January 2005

Abstract

The positions of atoms forming a carbon nanotube are usually described by using a system of generators of the symmetry group. Each atomic position corresponds to an element of the set $\mathbb{Z} \times$ $\{0,1, \ldots, n\} \times\{0,1\}$, where n is a natural number depending on the considered nanotube. We obtain an alternate rather different description by starting from a description of the honeycomb lattice in terms of Miller indices. In our mathematical model which is a factor space defined by an equivalence relation in the set $\left\{\left(v_{0}, v_{1}, v_{2}\right) \in \mathbb{Z}^{3} \mid v_{0}+v_{1}+v_{2} \in\{0,1\}\right\}$ the neighbours of an atomic position can be described in a simpler way, and the mathematical objects with geometric or physical significance have a simpler and more symmetric form. © 2004 Elsevier B.V. All rights reserved.

PACS: 61.46.+w; 73.63.Fg
MSC: 81V55
JGP SC: Quantum mechanics
Keywords: Single-wall carbon nanotube; Honeycomb lattice; Energy levels

[^0]
1. Introduction

The carbon nanotubes, discovered by Iijima in 1991, have several remarkable physical properties (geometry-dependent electronic transport from metallic to semiconducting with narrow and moderate band gaps, record-high elastic modulus, light weight) and many potential applications (molecular electronic devices, fiber reinforcement technologies, flat displays, carbon-based nanotips). Extensive experimental and theoretical investigations have been carried out on the mechanical and electronic properties of these novel fibers.

The structure of a single-wall carbon nanotube observed by scanning tunneling microscopy [14] can be visualized as the structure obtained by rolling a graphene sheet such that the endpoints of a translation vector are folded one onto the other. The geometric and physical properties of the obtained carbon nanotube depend on this vector, called the chirality of the tubule. The position of the atoms forming a carbon nanotube are usually described by using a system of generators of the corresponding symmetry group. Our purpose is to present an alternate mathematical model obtained by starting from a three-axes description (that is, a description in terms of Miller indices [13]) of the honeycomb lattice.

2. Honeycomb lattice in a three-axes description

The vectors $e_{0}=(2 / \sqrt{6}, 0)$, $e_{1}=(-1 / \sqrt{6}, 1 / \sqrt{2})$, $e_{2}=(-1 / \sqrt{6},-1 / \sqrt{2})$ corresponding to the vertices of an equilateral triangle form a system of coherent vectors [2], that is, for any $v=\left(v_{x}, v_{y}\right), u=\left(u_{x}, u_{y}\right) \in \mathbb{R}^{2}$ we have

$$
\begin{equation*}
v=\sum_{i=0}^{2}\left\langle v, e_{i}\right\rangle e_{i}, \quad\langle v, u\rangle=\sum_{i=0}^{2}\left\langle v, e_{i}\right\rangle\left\langle u, e_{i}\right\rangle, \quad\|v\|^{2}=\sum_{i=0}^{2}\left\langle v, e_{i}\right\rangle^{2}, \tag{1}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is the usual scalar product. The numbers $\tilde{v}_{0}=\left\langle v, e_{0}\right\rangle, \tilde{v}_{1}=\left\langle v, e_{1}\right\rangle, \tilde{v}_{2}=\left\langle v, e_{2}\right\rangle$ satisfy the relation $\tilde{v}_{0}+\tilde{v}_{1}+\tilde{v}_{2}=0$ and can be regarded as the canonical coordinates of v with respect to the system of vectors $\left\{e_{0}, e_{1}, e_{2}\right\}$. The space

$$
\begin{equation*}
\mathcal{E}=\left\{\left(u_{0}, u_{1}, u_{2}\right) \in \mathbb{R}^{3} \mid u_{0}+u_{1}+u_{2}=0\right\} \tag{2}
\end{equation*}
$$

becomes in this way a mathematical model for the geometric plane. The correspondence between this description and the usual one is given by the isometry

$$
\begin{equation*}
\mathcal{I}: \mathbb{R}^{2} \longrightarrow \mathcal{E}, \quad \mathcal{I} v=\left(\tilde{v}_{0}, \tilde{v}_{1}, \tilde{v}_{2}\right), \quad \mathcal{I}^{-1}\left(u_{0}, u_{1}, u_{2}\right)=\sum_{i=0}^{2} u_{i} e_{i} \tag{3}
\end{equation*}
$$

The representation of a vector $v \in \mathbb{R}^{2}$ as a linear combination of e_{0}, e_{1}, e_{2} is not unique. More exactly, we have

$$
v=\sum_{i=0}^{2} v_{i} e_{i} \Longleftrightarrow\left(v_{0}, v_{1}, v_{2}\right) \in\left\{\left(\tilde{v}_{0}+\alpha, \tilde{v}_{1}+\alpha, \tilde{v}_{2}+\alpha\right) \mid \alpha \in \mathbb{R}\right\}
$$

For each $v \in \mathbb{R}^{2}$ we denote by (v_{0}, v_{1}, v_{2}) (or simply by v) an element of \mathbb{R}^{3} such that $v=v_{0} e_{0}+v_{1} e_{1}+v_{2} e_{2}$. One can verify by direct computation that

$$
\begin{equation*}
\langle u, v\rangle=\sum_{i=0}^{2} \tilde{u}_{i} \tilde{v}_{i}=\sum_{i=0}^{2} \tilde{u}_{i} v_{i}=\sum_{i=0}^{2} u_{i} \tilde{v}_{i} \tag{4}
\end{equation*}
$$

for any $u, v \in \mathbb{R}^{2}$.
The points of the plane \mathbb{R}^{2} corresponding to the elements of the set

$$
\begin{equation*}
\mathcal{L}=\left\{v=\left(v_{0}, v_{1}, v_{2}\right) \in \mathbb{Z}^{3} \mid v_{0}+v_{1}+v_{2} \in\{0,1\}\right\} \tag{5}
\end{equation*}
$$

are distinct and form [3] the honeycomb lattice

$$
\begin{equation*}
\Lambda=\left\{\sum_{i=0}^{2} v_{i} e_{i} \mid v=\left(v_{0}, v_{1}, v_{2}\right) \in \mathcal{L}\right\} \tag{6}
\end{equation*}
$$

The bijection $\mathcal{L} \longrightarrow \Lambda: v \mapsto \sum_{i=0}^{2} v_{i} e_{i}$ allows us to describe Λ by using \mathcal{L}.
The nearest neighbours of v are

$$
v^{0}=\left(v_{0}+v(v), v_{1}, v_{2}\right), \quad v^{1}=\left(v_{0}, v_{1}+v(v), v_{2}\right), \quad v^{2}=\left(v_{0}, v_{1}, v_{2}+v(v)\right)
$$

where $v(v)=(-1)^{v_{0}+v_{1}+v_{2}}$. The six points $v^{i j}=\left(v^{i}\right)^{j}$ corresponding to $i \neq j$ are the next-to-nearest neighbours of v, and one can remark that $v^{i i}=v, v^{i j l}=v^{l j i}$, for any $i, j, l \in$ $\{0,1,2\}$. The mapping [4]

$$
\begin{equation*}
d: \mathcal{L} \times \mathcal{L} \longrightarrow \mathbb{N}, \quad d(v, u)=\left|v_{0}-u_{0}\right|+\left|v_{1}-u_{1}\right|+\left|v_{2}-u_{2}\right| \tag{7}
\end{equation*}
$$

is a distance on \mathcal{L}, and a point u is a neighbour of order l of v if $d(v, u)=l$.
We have $\mathcal{L}=\mathcal{T} \cup(\mathcal{T}+\vartheta)$, where $\vartheta=(1,0,0)$ and

$$
\begin{equation*}
\mathcal{T}=\left\{v=\left(v_{0}, v_{1}, v_{2}\right) \in \mathbb{Z}^{3} \mid v_{0}+v_{1}+v_{2}=0\right\}=\mathcal{E} \cap \mathbb{Z}^{3} . \tag{8}
\end{equation*}
$$

The symmetry group G of the honeycomb lattice coincides with the group of all the isometries of the metric space (\mathcal{L}, d), and is generated by the transformations [4]

$$
\begin{array}{ll}
\sigma: \mathcal{L} \longrightarrow \mathcal{L}, & \sigma\left(v_{0}, v_{1}, v_{2}\right)=\left(v_{1}, v_{2}, v_{0}\right) \\
\varrho: \mathcal{L} \longrightarrow \mathcal{L}, & \varrho\left(v_{0}, v_{1}, v_{2}\right)=\left(v_{0}, v_{2}, v_{1}\right) \\
\tau: \mathcal{L} \longrightarrow \mathcal{L}, & \tau\left(v_{0}, v_{1}, v_{2}\right)=-\left(v_{0}, v_{1}, v_{2}\right)+\vartheta \tag{9}
\end{array}
$$

The group G contains the subgroup of translations (also denoted by \mathcal{T})

$$
\{\mathcal{L} \longrightarrow \mathcal{L}: v \mapsto v+u \mid u \in \mathcal{T}\}
$$

generated by $\sigma^{2} \tau \sigma \tau$ and $\sigma \tau \sigma^{2} \tau$

$$
\begin{align*}
& \sigma^{2} \tau \sigma \tau\left(v_{0}, v_{1}, v_{2}\right)=\left(v_{0}, v_{1}, v_{2}\right)+(-1,1,0) \\
& \sigma \tau \sigma^{2} \tau\left(v_{0}, v_{1}, v_{2}\right)=\left(v_{0}, v_{1}, v_{2}\right)+(-1,0,1) \tag{10}
\end{align*}
$$

It is known [12] that the C - C bond length in the case of a graphene sheet is $1.44 \AA$. If we use the honeycomb lattice \mathcal{L} as a mathematical model for a graphene sheet then we have to multiply the position vectors of the points of the lattice by the constant $a=1.44 \sqrt{6} / 2$ in order to get their lengths in \AA.

Consider the Hilbert space $\left(l^{2}(\mathcal{L}),\langle\cdot, \cdot\rangle\right)$, where

$$
\begin{align*}
& l^{2}(\mathcal{L})=\left\{\psi:\left.\mathcal{L} \longrightarrow \mathbb{C}\left|\sum_{v \in \mathcal{L}}\right| \psi(v)\right|^{2}<\infty\right\} \\
& \left\langle\psi_{1}, \psi_{2}\right\rangle=\sum_{v \in \mathcal{L}} \bar{\psi}_{1}(v) \psi_{2}(v) \tag{11}
\end{align*}
$$

and the unitary representation of G in $l^{2}(\mathcal{L})$ defined by

$$
\begin{equation*}
g: l^{2}(\mathcal{L}) \longrightarrow l^{2}(\mathcal{L}), \quad(g \psi)(v)=\psi\left(g^{-1} v\right) \tag{12}
\end{equation*}
$$

Let ε be a real number, and $\gamma_{0}, \gamma_{1}, \gamma_{2}$ be three complex numbers. The linear operator

$$
\begin{equation*}
H: l^{2}(\mathcal{L}) \longrightarrow l^{2}(\mathcal{L}), \quad(H \psi)(v)=\varepsilon \psi(v)+\sum_{j=0}^{2} \gamma\left(v, v^{j}\right) \psi\left(v^{j}\right) \tag{13}
\end{equation*}
$$

where

$$
\gamma\left(v, v^{j}\right)=\left\{\begin{array}{l}
\gamma_{j} \text { if } v(v)=1 \tag{14}\\
\bar{\gamma}_{j} \text { if } v(v)=-1
\end{array}\right.
$$

is a self-adjoint operator

$$
\begin{aligned}
\left\langle H \psi_{1}, \psi_{2}\right\rangle & =\varepsilon \sum_{v \in \mathcal{L}} \bar{\psi}_{1}(v) \psi_{2}(v)+\sum_{j=0}^{2} \sum_{v \in \mathcal{L}} \bar{\gamma}\left(v, v^{j}\right) \bar{\psi}_{1}\left(v^{j}\right) \psi_{2}(v) \\
& =\varepsilon \sum_{v \in \mathcal{L}} \bar{\psi}_{1}(v) \psi_{2}(v)+\sum_{j=0}^{2} \sum_{v \in \mathcal{L}} \gamma\left(v, v^{j}\right) \bar{\psi}_{1}(v) \psi_{2}\left(v^{j}\right)=\left\langle\psi_{1}, H \psi_{2}\right\rangle
\end{aligned}
$$

The Hamiltonian used in the tight-binding description of π bands in 2D graphite, with only first-neighbour $\mathrm{C}-\mathrm{C}$ interaction, has the form (13).

Theorem 1. For any $k=\left(k_{0}, k_{1}, k_{2}\right) \in \mathcal{E}$ the real numbers

$$
\begin{equation*}
E_{ \pm}(k)=\varepsilon \pm\left|\gamma_{0} \mathrm{e}^{\mathrm{i} k_{0} a}+\gamma_{1} \mathrm{e}^{\mathrm{i} k_{1} a}+\gamma_{2} \mathrm{e}^{\mathrm{i} k_{2} a}\right| \tag{15}
\end{equation*}
$$

belong to the spectrum of H.
Proof. The function

$$
\varphi: \mathcal{L} \longrightarrow \mathbb{C}, \quad \varphi(v)=\left\{\begin{array}{l}
\alpha \text { for } v \in \mathcal{T} \\
\beta \text { for } v \in \mathcal{T}+\vartheta
\end{array}\right.
$$

where α, β are two constants, is invariant under any translation $u \in \mathcal{T}$

$$
\varphi(v+u)=\varphi(v) \quad \text { for all } v \in \mathcal{L}
$$

The Bloch type function

$$
\begin{equation*}
\psi_{k}: \mathcal{L} \longrightarrow \mathbb{C}, \quad \psi_{k}(v)=\varphi(v) \mathrm{e}^{\mathrm{i}\langle k, v\rangle a} \tag{16}
\end{equation*}
$$

belonging to an extension of the space $l^{2}(\mathcal{L})$ satisfies the relation $H \psi_{k}=E \psi_{k}$ if and only if (α, β) is a solution of the system of equations

$$
\begin{aligned}
& \varepsilon \alpha+\left(\gamma_{0} \mathrm{e}^{\mathrm{i} k_{0} a}+\gamma_{1} \mathrm{e}^{\mathrm{i} k_{1} a}+\gamma_{2} \mathrm{e}^{\mathrm{i} k_{2} a}\right) \beta=E \alpha \\
& \left(\bar{\gamma}_{0} \mathrm{e}^{-\mathrm{i} k_{0} a}+\bar{\gamma}_{1} \mathrm{e}^{-\mathrm{i} k_{1} a}+\bar{\gamma}_{2} \mathrm{e}^{-\mathrm{i} k_{2} a}\right) \alpha+\varepsilon \beta=E \beta
\end{aligned}
$$

This system has non-trivial solutions if and only if

$$
\left|\begin{array}{cc}
\varepsilon-E & \gamma_{0} \mathrm{e}^{\mathrm{i} k_{0} a}+\gamma_{1} \mathrm{e}^{\mathrm{i} k_{1} a}+\gamma_{2} \mathrm{e}^{\mathrm{i} k_{2} a} \\
\bar{\gamma}_{0} \mathrm{e}^{-\mathrm{i} k_{0} a}+\bar{\gamma}_{1} \mathrm{e}^{-\mathrm{i} k_{1} a}+\bar{\gamma}_{2} \mathrm{e}^{-\mathrm{i} k_{2} a} & \varepsilon-E
\end{array}\right|=0
$$

that is, if and only if E is one of the numbers $E_{ \pm}(k)$.
The origin on the energy axis is usually chosen such that $\varepsilon=0$. If $\gamma_{0}=\gamma_{1}=\gamma_{2}=\gamma$ is a real positive number then H is a G-invariant self-adjoint operator and its spectrum contains for each $k \in \mathcal{E}$ the numbers $\pm E(k)$, where

$$
\begin{align*}
E(k) & =\gamma\left|\mathrm{e}^{\mathrm{i} k_{0} a}+\mathrm{e}^{\mathrm{i} k_{1} a}+\mathrm{e}^{\mathrm{i} k_{2} a}\right| \\
& =\gamma \sqrt{3+2 \cos \left(k_{0}-k_{1}\right) a+2 \cos \left(k_{1}-k_{2}\right) a+2 \cos \left(k_{2}-k_{0}\right) a} \tag{17}
\end{align*}
$$

The relation (17) allows us to extend the function $E: \mathcal{E} \longrightarrow \mathbb{R}$ to a periodic function $E: \mathbb{R}^{3} \longrightarrow \mathbb{R}$

$$
\begin{align*}
E\left(k_{0}, k_{1}, k_{2}\right) & =E\left(k_{0}+\frac{2 \pi}{a}, k_{1}, k_{2}\right)=E\left(k_{0}, k_{1}+\frac{2 \pi}{a}, k_{2}\right) \\
& =E\left(k_{0}, k_{1}, k_{2}+\frac{2 \pi}{a}\right) \tag{18}
\end{align*}
$$

with the property

$$
E\left(k_{0}, k_{1}, k_{2}\right)=E\left(k_{0}+\alpha, k_{1}+\alpha, k_{2}+\alpha\right) \quad \text { for all } \alpha \in \mathbb{R}
$$

The corresponding first Brillouin zone is the hexagonal set (Fig. 2)

$$
\begin{equation*}
\mathcal{B}=\left\{\left(k_{0}, k_{1}, k_{2}\right) \in \mathcal{E} \left\lvert\,-\frac{2 \pi}{3 a} \leq k_{i} \leq \frac{2 \pi}{3 a}\right.\right\} \tag{19}
\end{equation*}
$$

(certain points lying on the frontier of \mathcal{B} are equivalent).
The intervals $[-3 \gamma, 0]=\{-E(k) \mid k \in \mathcal{B}\}$ and $[0,3 \gamma]=\{E(k) \mid k \in \mathcal{B}\}$ correspond to the valence π and the conduction π^{*} energy bands, respectively. The graphene sheet is a conductor since the gap between these bands is null.

Since $E(k)$ can be written as

$$
E(k)=\gamma \sqrt{\left(\cos k_{0} a+\cos k_{1} a+\cos k_{2} a\right)^{2}+\left(\sin k_{0} a+\sin k_{1} a+\sin k_{2} a\right)^{2}}
$$

we have $E(k) \geq 0$, and the only points of \mathcal{B} with $E(k)=0$ are

$$
\begin{equation*}
\pm\left(\frac{2 \pi}{3 a},-\frac{2 \pi}{3 a}, 0\right), \quad \pm\left(\frac{2 \pi}{3 a}, 0,-\frac{2 \pi}{3 a}\right), \quad \pm\left(0, \frac{2 \pi}{3 a},-\frac{2 \pi}{3 a}\right) \tag{20}
\end{equation*}
$$

that is, the vertices of the Brillouin zone (usually denoted by K) [10].
It is known that the Fermi level for a graphene sheet occurs at the K points. The function $E: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ is not differentiable at these points. We have, for example,

$$
\begin{align*}
& \lim _{k_{0} \rightarrow 2 \pi / 3 a} \frac{E\left(k_{0},-2 \pi / 3 a, 0\right)-0}{k_{0}-2 \pi / 3 a}=\gamma \quad \lim _{k_{0} \rightarrow 2 \pi / 3 a} \frac{\sqrt{2+2 \cos \left(k_{0} a+\pi / 3\right)}}{k_{0}-2 \pi / 3 a}=2 \gamma \\
& \lim _{k_{0} \rightarrow 2 \pi / 3 a} \frac{\left|\cos \left(k_{0} a / 2+\pi / 6\right)\right|}{k_{0}-2 \pi / 3 a} \tag{21}
\end{align*}
$$

whence

$$
\lim _{\substack{k_{0} \rightarrow 2 \pi / 3 a \\ k_{0}>2 \pi / 3 a}} \frac{E\left(k_{0},-2 \pi / 3 a, 0\right)-0}{k_{0}-2 \pi / 3 a}=\gamma a, \quad \lim _{\substack{k_{0} \rightarrow 2 \pi / 3 a \\ k_{0}<2 \pi / 3 a}} \frac{E\left(k_{0},-2 \pi / 3 a, 0\right)-0}{k_{0}-2 \pi / 3 a}=-\gamma a .
$$

The function $E: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ is differentiable at any point k with $E(k) \neq 0$, and

$$
\begin{equation*}
\frac{\partial E}{\partial k_{0}}(k)=\gamma \frac{-a \sin \left(k_{0}-k_{1}\right) a+a \sin \left(k_{2}-k_{0}\right) a}{\sqrt{3+2 \cos \left(k_{0}-k_{1}\right) a+2 \cos \left(k_{1}-k_{2}\right) a+2 \cos \left(k_{2}-k_{0}\right) a}}, \tag{22}
\end{equation*}
$$

etc. The stationary points lying in the Brillouin zone \mathcal{B} are

$$
\begin{aligned}
& (0,0,0), \quad \pm\left(\frac{2 \pi}{3 a},-\frac{\pi}{3 a},-\frac{\pi}{3 a}\right), \quad \pm\left(-\frac{\pi}{3 a}, \frac{2 \pi}{3 a},-\frac{\pi}{3 a}\right) \\
& \pm\left(-\frac{\pi}{3 a},-\frac{\pi}{3 a}, \frac{2 \pi}{3 a}\right)
\end{aligned}
$$

that is, the center (a maximum point, denoted by Γ) and the middle of the edges of the Brillouin zone (saddle points, denoted by M).

3. Chiral single-wall carbon nanotubes

A single-wall carbon nanotube can be visualized as the structure obtained by rolling a graphene sheet such that the endpoints O and A of a translation vector $\overrightarrow{O A}$ are folded one onto the other (Fig. 1). The geometric and physical properties of the obtained nanotube depend on this vector, called the chirality of the tubule and represented in our approach by an element $c \in \mathcal{T}$. Without loss of generality, we can restrict us to the tubules with $c_{0}>c_{1} \geq c_{2}$. In the case $c_{1}=c_{2}$ we have an armchair tubule, and in the case $c_{1}=0 \mathrm{a}$

Fig. 1. The honeycomb lattice and the partition defined by a vector $c \in \mathcal{T}$.
zig-zag tubule. The nanotubes with $0 \neq c_{1} \neq c_{2}$ are called chiral nanotubes. The diameter of the nanotube of chirality c is $\|c\| a / \pi$.

After the graphene sheet rolling, the points $\ldots, v-2 c, v-c, v, v+c, v+2 c, \ldots$ are folded one onto the other, for any $v=\left(v_{0}, v_{1}, v_{2}\right) \in \mathcal{L}$. Thus, each point of the set

$$
\begin{equation*}
\left[v_{0}, v_{1}, v_{2}\right]=v+\mathbb{Z} c=\left\{\left(v_{0}+j c_{0}, v_{1}+j c_{1}, v_{2}+j c_{2}\right) \mid j \in \mathbb{Z}\right\} \tag{23}
\end{equation*}
$$

describes the same point of the carbon nanotube of chirality c. Each rational number is a class of equivalent fractions, called its representatives. In a similar way, for each point of a carbon nanotube we have an infinite number of possibilities to describe it in our model. A mathematical expression containing the coordinates of a point is well defined only if it does not depend on the representative we choose. We describe the atomic positions on a carbon nanotube by using the subset

$$
\begin{equation*}
\mathcal{L}_{c}=\left\{\left.\left[v_{0}, v_{1}, v_{2}\right] \in \frac{\mathbb{Z}^{3}}{\mathbb{Z} c} \right\rvert\, v_{0}+v_{1}+v_{2} \in\{0 ; 1\}\right\} . \tag{24}
\end{equation*}
$$

of the factor space

$$
\begin{equation*}
\frac{\mathbb{Z}^{3}}{\mathbb{Z} c}=\left\{[v]=\left(v_{0}, v_{1}, v_{2}\right)+\mathbb{Z} c \mid v_{0}, v_{1}, v_{2} \in \mathbb{Z}\right\} \tag{25}
\end{equation*}
$$

as a mathematical model. One can remark that \mathcal{L}_{c} is well defined since the condition $v_{0}+v_{1}+v_{2} \in\{0 ; 1\}$ we impose to $\left[v_{0}, v_{1}, v_{2}\right]$ does not depend on the representative we choose. Indeed, $\left(v_{0}+j c_{0}\right)+\left(v_{1}+j c_{1}\right)+\left(v_{2}+j c_{2}\right)=v_{0}+v_{1}+v_{2}$ for all $j \in \mathbb{Z}$.

Each point $[v] \in \mathcal{L}_{c}$ has three nearest neighbours, namely, $\left[v^{0}\right],\left[v^{1}\right],\left[v^{2}\right]$, and six next-to-nearest neighbours, namely, $\left[v^{01}\right],\left[v^{10}\right],\left[v^{12}\right],\left[v^{21}\right],\left[v^{20}\right],\left[v^{02}\right]$.

A symmetry transformation of the honeycomb lattice $\mathcal{L} \longrightarrow \mathcal{L}: v \mapsto g v$ defines the symmetry transformation $\mathcal{L}_{c} \longrightarrow \mathcal{L}_{c}:[v] \mapsto[g v]$ of the carbon nanotube \mathcal{L}_{c} if

$$
[v]=[u] \Longrightarrow[g v]=[g u],
$$

that is, if

$$
v-u \in \mathbb{Z} c \Longrightarrow g v-g u \in \mathbb{Z} c
$$

Theorem 2. The transformations

$$
\begin{equation*}
g_{w}: \mathcal{L}_{c} \longrightarrow \mathcal{L}_{c}, \quad g_{w}[v]=[v+w], \quad \tau: \mathcal{L}_{c} \longrightarrow \mathcal{L}_{c}, \quad \tau[v]=[-v+\vartheta] \tag{26}
\end{equation*}
$$

are symmetry transformation of \mathcal{L}_{c} for all $w \in \mathcal{T}$.
Proof. We have $v-u \in \mathbb{Z} c \Longrightarrow(v+w)-(u+w)=v-u \in \mathbb{Z} c$, and $v-u \in \mathbb{Z} c \Longrightarrow$ $(-v+\vartheta)-(-u+\vartheta)=u-v \in \mathbb{Z} c$.

Let $n=\operatorname{gcd}\left\{c_{0}, c_{1}, c_{2}\right\}$ be the greatest common divisor of c_{0}, c_{1}, c_{2}, and let $c=n c^{\prime}$, that is, $c_{0}^{\prime}=c_{0} / n, c_{1}^{\prime}=c_{1} / n$ and $c_{2}^{\prime}=c_{2} / n$. The transformation $g_{c^{\prime}}$ represents a rotation of angle $2 \pi / n$ of the nanotube with respect to its axis. Since $\left(c_{1}-c_{2}\right) c_{0}+\left(c_{2}-c_{0}\right) c_{1}+$ $\left(c_{0}-c_{1}\right) c_{2}=0$, the vector $w=\left(c_{1}-c_{2}, c_{2}-c_{0}, c_{0}-c_{1}\right)$ is orthogonal to c, and the corresponding transformation g_{w} is a pure translation, that is, a translation in the direction of the nanotube symmetry axis. The vector $b=(1 / \mathcal{R})\left(c_{1}-c_{2}, c_{2}-c_{0}, c_{0}-c_{1}\right)$, where

$$
\mathcal{R}=\operatorname{gcd}\left\{c_{1}-c_{2}, c_{2}-c_{0}, c_{0}-c_{1}\right\}=\left\{\begin{array}{l}
n \text { if } c_{1}^{\prime}-c_{2}^{\prime} \notin 3 \mathbb{Z} \tag{27}\\
3 n \text { if } c_{1}^{\prime}-c_{2}^{\prime} \in 3 \mathbb{Z}
\end{array}\right.
$$

defines the shortest pure translation of \mathcal{L}_{c}.
From $c_{0}+c_{1}+c_{2}=0$, we get $\left(c_{1}-c_{2}\right)^{2}+\left(c_{2}-c_{0}\right)^{2}+\left(c_{0}-c_{1}\right)^{2}=3\left(c_{0}^{2}+c_{1}^{2}+\right.$ c_{2}^{2}), that is, $\mathcal{R}^{2}\|b\|^{2}=3\|c\|^{2}$, whence

$$
\begin{equation*}
q=\frac{1}{\mathcal{R}}\left(c_{0}^{2}+c_{1}^{2}+c_{2}^{2}\right) \in n \mathbb{Z} \tag{28}
\end{equation*}
$$

For any $w \in \mathcal{T}$ the projections of w on c and b can be written as

$$
\frac{\langle w, c\rangle}{\|c\|^{2}} c=\left(w_{1} \frac{c_{1}-c_{0}}{\mathcal{R}}+w_{2} \frac{c_{2}-c_{0}}{\mathcal{R}}\right) \frac{c}{q}, \quad \frac{\langle w, b\rangle}{\|b\|^{2}} b=\left(w_{1} \frac{c_{2}}{n}-w_{2} \frac{c_{1}}{n}\right) \frac{b}{q^{\prime}},
$$

where $q^{\prime}=q / n$. It is well known that in the case of two integer numbers $\eta, \mu \in \mathbb{Z}$ with $\operatorname{gcd}\{\eta, \mu\}=1$ there exist $\alpha, \beta \in \mathbb{Z}$ with $\alpha \eta+\beta \mu=1$. Since $\operatorname{gcd}\left\{\left(c_{1}-c_{0}\right) / \mathcal{R},\left(c_{2}-\right.\right.$ $\left.\left.c_{0}\right) / \mathcal{R}\right\}=1$ and $\operatorname{gcd}\left\{c_{2} / n, c_{1} / n\right\}=1$ it follows that the projection of \mathcal{T} on c is $\mathbb{Z} c / q$ and the projection of \mathcal{T} on b is $\mathbb{Z} b / q^{\prime}$. Let $\omega \in \mathcal{T}$ be the shortest vector with

$$
\begin{equation*}
\frac{\langle\omega, b\rangle}{\|b\|^{2}} b=\frac{b}{q^{\prime}} \tag{29}
\end{equation*}
$$

If \mathcal{L}_{c} is a chiral nanotube then its symmetry group G_{c} is generated by the transformations $g_{c^{\prime}}, g_{\omega}$ and τ (additional symmetry operations, namely, mirror and glide planes occur only in the case of armchair and zig-zag nanotubes). More than that, for any $[v] \in \mathcal{L}_{c}$ there exist $s \in \mathbb{Z}, m \in\{0,1, \ldots, n-1\}$ and $p \in\{0,1\}$ uniquely determined such that

$$
\begin{equation*}
[v]=\tau^{p} g_{\omega}^{s} g_{c^{\prime}}^{m}[0,0,0] \tag{30}
\end{equation*}
$$

The usual description of the atomic positions of the atoms forming a carbon nanotube $[15,16]$ is based on this remark, and the set

$$
\begin{equation*}
\{(s, m, p) \mid s \in \mathbb{Z}, m \in\{0,1, \ldots, n-1\}, p \in\{0,1\}\} \tag{31}
\end{equation*}
$$

is used as a mathematical model.
The subgroup \tilde{G}_{c} of G_{c} generated by $g_{c^{\prime}}$ and g_{ω} is a commutative index-2 subgroup, and $g_{c^{\prime}}^{n}=I, g_{\omega}^{q^{\prime}}=g_{b}$, where I is the transformation $I[v]=[v]$ for all $[v] \in \mathcal{L}_{c}$. The irreducible representations of \tilde{G}_{c} are one-dimensional and can be described in terms of generators as [5]

$$
\begin{align*}
& T_{(\kappa, m)}\left(g_{c^{\prime}}\right)=\mathrm{e}^{-\mathrm{i} 2 \pi m / n}, \quad \text { where } m \in\{0,1, \ldots, n-1\}, \\
& T_{(\kappa, m)}\left(g_{\omega}\right)=\mathrm{e}^{-\mathrm{i} \kappa a / q^{\prime}}, \quad \text { where } \kappa \in\left[0, \frac{2 \pi q^{\prime}}{a}\right) \tag{32}
\end{align*}
$$

The irreducible representations of G_{c} can be obtained from the irreducible representations of \tilde{G}_{c} by using the index- 2 subgroup induction.

Consider the Hilbert space $\left(l^{2}\left(\mathcal{L}_{c}\right),\langle\cdot, \cdot\rangle\right)$, where

$$
\begin{equation*}
l^{2}\left(\mathcal{L}_{c}\right)=\left\{\psi:\left.\mathcal{L}_{c} \longrightarrow \mathbb{C}\left|\sum_{v \in \mathcal{L}_{c}}\right| \psi(v)\right|^{2}<\infty\right\}, \quad\left\langle\psi_{1}, \psi_{2}\right\rangle=\sum_{v \in \mathcal{L}_{c}} \bar{\psi}_{1}(v) \psi_{2}(v) \tag{33}
\end{equation*}
$$

and the unitary representation of G_{c} in $l^{2}\left(\mathcal{L}_{c}\right)$ defined by

$$
\begin{equation*}
g: l^{2}\left(\mathcal{L}_{c}\right) \longrightarrow l^{2}\left(\mathcal{L}_{c}\right), \quad(g \psi)[v]=\psi\left(g^{-1}[v]\right) \tag{34}
\end{equation*}
$$

If ε is a real number and $\gamma_{0}, \gamma_{1}, \gamma_{2}$ are three complex numbers, then the linear operator

$$
\begin{equation*}
H: l^{2}\left(\mathcal{L}_{c}\right) \longrightarrow l^{2}\left(\mathcal{L}_{c}\right), \quad(H \psi)[v]=\varepsilon \psi[v]+\sum_{j=0}^{2} \gamma\left(v, v^{j}\right) \psi\left[v^{j}\right] \tag{35}
\end{equation*}
$$

with $\gamma\left(v, v^{j}\right)$ defined by (14), is a self-adjoint operator.
Theorem 3. For any $k=\left(k_{0}, k_{1}, k_{2}\right) \in \mathcal{E}$ satisfying the relation

$$
\begin{equation*}
\langle k, c\rangle=k_{0} c_{0}+k_{1} c_{1}+k_{2} c_{2} \in\left(\frac{2 \pi}{a}\right) \mathbb{Z} \tag{36}
\end{equation*}
$$

the real numbers

$$
\begin{equation*}
E_{ \pm}(k)=\varepsilon \pm\left|\gamma_{0} \mathrm{e}^{\mathrm{i} k_{0} a}+\gamma_{1} \mathrm{e}^{\mathrm{i} k_{1} a}+\gamma_{2} \mathrm{e}^{\mathrm{i} k_{2} a}\right| \tag{37}
\end{equation*}
$$

belong to the spectrum of H.
Proof. For $k \in \mathcal{E}$ satisfying (36) we have

$$
v-u \in \mathbb{Z} c \Longrightarrow \varphi(v) \mathrm{e}^{\mathrm{i}(k, v\rangle a}=\varphi(u) \mathrm{e}^{\mathrm{i}(k, u\rangle a}
$$

Fig. 2. The first Brillouin zone \mathcal{B} (left) and the set \mathcal{B}_{c} in case $n=4$ (right).
and hence the Bloch type function

$$
\begin{equation*}
\psi_{k}: \mathcal{L}_{c} \longrightarrow \mathbb{C}, \quad \psi_{k}[v]=\varphi(v) \mathrm{e}^{\mathrm{i}(k, v) a} \tag{38}
\end{equation*}
$$

is well defined. If $E \in\left\{E_{+}(k), E_{-}(k)\right\}$ then there exists a non-null function of this form satisfying the relation $H \psi_{k}=E \psi_{k}$.

If $\gamma_{0}, \gamma_{1}, \gamma_{2}$ are real then H is G_{c}-invariant. Indeed, since $g_{c^{\prime}} v^{j}=\left(g_{c^{\prime}} v\right)^{j}, g_{\omega} v^{j}=\left(g_{\omega} v\right)^{j}$ and $\tau v^{j}=(\tau v)^{j}$ we have $g H^{-1}=H$, for any $g \in G_{c}$. Denoting $\langle k, c\rangle=2 m \pi / a$ and $\langle k, \omega\rangle=\kappa / q^{\prime}$ we get

$$
\begin{align*}
& \left(g_{c^{\prime}} \psi_{k}\right)[v]=\varphi(v) \mathrm{e}^{\mathrm{i}\left\langle k, v-c^{\prime}\right\rangle a}=\mathrm{e}^{-\mathrm{i}\left(k, c^{\prime}\right\rangle a} \psi_{k}[v]=\mathrm{e}^{-\mathrm{i} 2 m \pi / n} \psi_{k}[v], \\
& \left(g_{\omega} \psi_{k}\right)[v]=\varphi(v) \mathrm{e}^{\mathrm{i}\langle k, v-\omega\rangle a}=\mathrm{e}^{-\mathrm{i}\langle k, \omega\rangle a} \psi_{k}[v]=\mathrm{e}^{-\mathrm{i} \kappa a / q^{\prime}} \psi_{k}[v], \\
& \left(\tau \psi_{k}\right)[v]=\varphi(\tau v) \mathrm{e}^{\mathrm{i}\langle k,-v+\vartheta\rangle a}=\left(\frac{\varphi(\tau v)}{\varphi(v)}\right) \mathrm{e}^{\mathrm{i} k_{0} a} \psi_{-k}[v] \tag{39}
\end{align*}
$$

that is, the subspace generated by ψ_{k} and ψ_{-k} is G_{c}-invariant. More than that, these relations allow us [5] to classify the eigenstates ψ_{k} by using the quantum numbers m and κ. The set (Fig. 2)

$$
\mathcal{B}_{c}=\left\{k \in \mathcal{E} \left\lvert\, \begin{array}{l}
\langle k, c\rangle=\frac{2 m \pi}{a} \text { with } m \in\{0,1, \ldots, n-1\} \tag{40}\\
\langle k, \omega\rangle=\frac{\kappa}{q^{\prime}} \text { with } \kappa \in\left[0, \frac{2 q^{\prime} \pi}{a}\right)
\end{array}\right.\right\} .
$$

contains a k corresponding to each class. The conduction m-band

$$
\begin{equation*}
\left\{E_{+}(k) \left\lvert\,\langle k, c\rangle=\frac{2 m \pi}{a}\right.,\langle k, \omega\rangle \in\left[0, \frac{2 \pi q^{\prime}}{a}\right)\right\} \tag{41}
\end{equation*}
$$

and the valence m-band

$$
\begin{equation*}
\left\{E_{-}(k) \left\lvert\,\langle k, c\rangle=\frac{2 m \pi}{a}\right.,\langle k, \omega\rangle \in\left[0, \frac{2 \pi q^{\prime}}{a}\right)\right\} \tag{42}
\end{equation*}
$$

can easily be determined by using (37). A graphic representation of these conduction bands can be found in [5].

The relation (36) defines a family of equidistant straight lines orthogonal to c with the distance between neighbouring lines equal to $\delta=2 \pi / a\|c\|$. Since the length of the
projection of the vector $(2 \pi / 3 a,-2 \pi / 3 a, 0)$ on c is $2 \pi\left(c_{0}-c_{1}\right) / 3 a\|c\|=\left(c_{0}-c_{1}\right) \delta / 3$, the K points belong to the straight lines (36) if and only if $c_{0}-c_{1} \in 3 \mathbb{Z}$.

The Hamiltonian used in the tight-binding description of π bands in \mathcal{L}_{c}, with only firstneighbour $\mathrm{C}-\mathrm{C}$ interaction, has the form (35). Except for very small diameter nanotubes, the constants $\gamma_{0}, \gamma_{1}, \gamma_{2}$ keep almost the same values as in the case of a graphene sheet [1,16]. Neglecting the effects of the curvature of the graphite sheet, we can assume $\varepsilon=0$, $\gamma_{0}=\gamma_{1}=\gamma_{2}=\gamma \in(0, \infty)$, and we get the energy levels

$$
\begin{equation*}
E_{ \pm}(k)= \pm \gamma \sqrt{3+2 \cos \left(k_{0}-k_{1}\right) a+2 \cos \left(k_{1}-k_{2}\right) a+2 \cos \left(k_{2}-k_{0}\right) a} \tag{43}
\end{equation*}
$$

From the form of the surface $E(k)$ [12], it follows that the gap between the valence and conduction bands is given by:

$$
\begin{equation*}
\Delta E_{c}=\min _{k \in \mathcal{B}_{c}} E_{+}(k)-\max _{k \in \mathcal{B}_{c}} E_{-}(k)=2 \min _{k \in \mathcal{B}_{c}} E(k) \tag{44}
\end{equation*}
$$

and we have $\Delta E_{c}=0$ if and only if $c_{0}-c_{1} \in 3 \mathbb{Z}$. Therefore [7,16], the nanotube \mathcal{L}_{c} is a conductor if $c_{0}-c_{1} \in 3 \mathbb{Z}$, and a semiconductor if $c_{0}-c_{1} \notin 3 \mathbb{Z}$. The minimum $\min _{k \in \mathcal{B}_{c}} E(k)$ is achieved [12] at a point lying on a straight line (36) in the vicinity of a point K.

In the case of a magnetic field parallel to the nanotube axis the Hamiltonian also has the form (35), but $\gamma_{0}=\gamma \mathrm{e}^{\mathrm{i} \beta c_{0} a}, \gamma_{1}=\gamma \mathrm{e}^{\mathrm{i} \beta c_{1} a}, \gamma_{2}=\gamma \mathrm{e}^{\mathrm{i} \beta c_{2} a}$, where β is a real constant describing the magnetic field strength threading the nanotube [9]. Choosing $\varepsilon=0, \gamma \in$ $(0, \infty)$, we get the energy levels

$$
\begin{equation*}
E_{ \pm}^{\mathrm{mag}}(k)= \pm \gamma\left|\mathrm{e}^{\mathrm{i}\left(k_{0}+\beta c_{0}\right) a}+\mathrm{e}^{\mathrm{i}\left(k_{1}+\beta c_{1}\right) a}+\mathrm{e}^{\mathrm{i}\left(k_{2}+\beta c_{2}\right) a}\right|=E_{ \pm}(k+\beta c) \tag{45}
\end{equation*}
$$

for any k satisfying (36). From this relation it follows that the presence of a magnetic field parallel to the nanotube axis can modify drastically the electronic properties of the nanotube, and this modification depends essentially on the nanotube chirality [9].

4. Concluding remarks

The alternate description presented in this paper offers certain formal advantages and is significantly different from the usual one. We think that it can be used as a complementary description, and may stimulate the interest of mathematicians in the fascinating geometry of carbon nanotubes. We have re-obtained some known results [5,6,8,9,11,12,16] concerning the chiral carbon nanotubes in order to illustrate the proposed approach.

Since our model is a factor space, we have to verify the independence of the representative (v_{0}, v_{1}, v_{2}) we choose for $\left[v_{0}, v_{1}, v_{2}\right]$ in the case of any mathematical object we consider on \mathcal{L}_{c}. This is not an inconvenience for our approach but a useful criterion when we look for mathematical objects with possible geometric or physical significance.

References

[1] H. Ajiki, T. Ando, Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62 (1993) 1255-1266.
[2] N. Cotfas, Systems of coherent vectors, J. Phys. A: Math. Gen. 33 (2000) 5003-5009.
[3] N. Cotfas, Random walks on carbon nanotubes and quasicrystals, J. Phys. A: Math. Gen. 33 (2000) 29172927.
[4] N. Cotfas, Quantum random walks on diamond-type crystals and carbon nanotubes, J. Phys. A: Math. Gen. 34 (2001) 5469-5483.
[5] M. Damnjanović, I. Milos̆ević, T. Vuković, J. Maultzsch, Quantum numbers and band topology of nanotubes, J. Phys. A: Math. Gen. 36 (2003) 5707-5717.
[6] M. Damnjanović, I. Milošević, T. Vuković, R. Sredanović, Symmetry and lattices of single-wall nanotubes, J. Phys. A: Math. Gen. 32 (1999) 4097-4104.
[7] N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors: graphitic microtubules, Phys. Rev. Lett. 68 (1992) 1579-1581.
[8] R. Jishi, L. Venkataraman, M.S. Dresselhaus, G. Dresselhaus, Symmetry properties of chiral carbon nanotubes, Phys. Rev. B 51 (1995) 11176-11179.
[9] J.P. Lu, Novel magnetic properties of carbon nanotubes, Phys. Rev. Lett. 74 (1995) 1123-1126.
[10] J.W. Mintmire, C.T. White, Universal density of states for carbon nanotubes, Phys. Rev. Lett. 81 (1998) 2506-2509.
[11] S. Reich, C. Thomsen, Chirality dependence of the density-of-states singularities in carbon nanotubes, Phys. Rev. B 62 (2000) 4273-4276.
[12] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Trigonal warping effect of carbon nanotubes, Phys. Rev. B 61 (2000) 2981-2990.
[13] Yu.I. Sirotin, M.P. Shaskolskaya, Fundamentals of Crystal Physics, Mir, Moscow, 1982, pp. 98-114.
[14] L.C. Venema, V. Meunier, Ph. Lambin, C. Dekker, Atomic structure of carbon nanotubes from scanning tunneling microscopy, Phys. Rev. B 61 (2000) 2991-2996.
[15] T. Vuković, I. Milošević, M. Damnjanović, Carbon nanotubes band assignation, topology, Bloch states, and selection rules, Phys. Rev. B 65 (2002) 045418.
[16] C.T. White, D.H. Robertson, J.W. Mintmire, Helical and rotational symmetries of nanoscale graphitic tubules, Phys. Rev. B 47 (1993) 5485-5488.

[^0]: * Tel.: +40 217690334; fax: +40 214574521.

 E-mail address: ncotfas@yahoo.com.

