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Abstract

The positions of atoms forming a carbon nanotube are usually described by using a system of
generators of the symmetry group. Each atomic position corresponds to an element of the setZ×
{0,1, . . . , n} × {0,1}, wheren is a natural number depending on the considered nanotube. We obtain
an alternate rather different description by starting from a description of the honeycomb lattice in
terms of Miller indices. In our mathematical model which is a factor space defined by an equivalence
relation in the set{(v0, v1, v2) ∈ Z3|v0 + v1 + v2 ∈ {0,1}} the neighbours of an atomic position can
be described in a simpler way, and the mathematical objects with geometric or physical significance
have a simpler and more symmetric form.
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1. Introduction

The carbon nanotubes, discovered by Iijima in 1991, have several remarkable physical
properties (geometry-dependent electronic transport from metallic to semiconducting with
narrow and moderate band gaps, record-high elastic modulus, light weight) and many po-
tential applications (molecular electronic devices, fiber reinforcement technologies, flat dis-
plays, carbon-based nanotips). Extensive experimental and theoretical investigations have
been carried out on the mechanical and electronic properties of these novel fibers.

The structure of a single-wall carbon nanotube observed by scanning tunneling mi-
croscopy[14] can be visualized as the structure obtained by rolling a graphene sheet such
that the endpoints of a translation vector are folded one onto the other. The geometric and
physical properties of the obtained carbon nanotube depend on this vector, called thechiral-
ity of the tubule. The position of the atoms forming a carbon nanotube are usually described
by using a system of generators of the corresponding symmetry group. Our purpose is to
present an alternate mathematical model obtained by starting from a three-axes description
(that is, a description in terms of Miller indices[13]) of the honeycomb lattice.

2. Honeycomb lattice in a three-axes description

The vectorse0 = (2/
√

6,0), e1 = (−1/
√

6,1/
√

2), e2 = (−1/
√

6,−1/
√

2) corre-
sponding to the vertices of an equilateral triangle form a system of coherent vectors[2],
that is, for anyv = (vx, vy), u = (ux, uy) ∈ R2 we have

v =
2∑
i=0

〈v, ei〉ei, 〈v, u〉 =
2∑
i=0

〈v, ei〉〈u, ei〉, ‖v‖2 =
2∑
i=0

〈v, ei〉2, (1)

where〈·, ·〉 is the usual scalar product. The numbersṽ0 = 〈v, e0〉, ṽ1 = 〈v, e1〉, ṽ2 = 〈v, e2〉
satisfy the relatioñv0 + ṽ1 + ṽ2 = 0 and can be regarded as thecanonical coordinatesof
v with respect to the system of vectors{e0, e1, e2}. The space

E = {(u0, u1, u2) ∈ R3|u0 + u1 + u2 = 0} (2)

becomes in this way a mathematical model for the geometric plane. The correspondence
between this description and the usual one is given by the isometry

I : R2 −→ E, Iv = (ṽ0, ṽ1, ṽ2), I−1(u0, u1, u2) =
2∑
i=0

uiei. (3)

The representation of a vectorv ∈ R2 as a linear combination ofe0, e1, e2 is not unique.
More exactly, we have

v =
2∑
i=0

viei ⇐⇒ (v0, v1, v2) ∈ {(ṽ0 + α, ṽ1 + α, ṽ2 + α)|α ∈ R}.
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For eachv ∈ R2 we denote by (v0, v1, v2) (or simply byv) an element ofR3 such that
v = v0e0 + v1e1 + v2e2. One can verify by direct computation that

〈u, v〉 =
2∑
i=0

ũiṽi =
2∑
i=0

ũivi =
2∑
i=0

uiṽi (4)

for anyu, v ∈ R2.
The points of the planeR2 corresponding to the elements of the set

L = {v = (v0, v1, v2) ∈ Z3|v0 + v1 + v2 ∈ {0,1}} (5)

are distinct and form[3] thehoneycomb lattice

Λ =
{

2∑
i=0

viei

∣∣∣∣∣v = (v0, v1, v2) ∈ L
}
. (6)

The bijectionL −→ Λ : v �→ ∑2
i=0 viei allows us to describeΛ by usingL.

Thenearest neighboursof v are

v0 = (v0 + ν(v), v1, v2), v1 = (v0, v1 + ν(v), v2), v2 = (v0, v1, v2 + ν(v)),

whereν(v) = (−1)v0+v1+v2. The six pointsvij = (vi)j corresponding toi �= j are thenext-
to-nearest neighboursof v, and one can remark thatvii = v, vijl = vlji, for any i, j, l ∈
{0,1,2}. The mapping[4]

d : L× L −→ N, d(v, u) = |v0 − u0| + |v1 − u1| + |v2 − u2| (7)

is a distance onL, and a pointu is aneighbour of order lof v if d(v, u) = l.
We haveL = T ∪ (T+ ϑ), whereϑ = (1,0,0) and

T = {v = (v0, v1, v2) ∈ Z3|v0 + v1 + v2 = 0} = E ∩ Z3. (8)

The symmetry groupG of the honeycomb lattice coincides with the group of all the isome-
tries of the metric space (L, d), and is generated by the transformations[4]

σ : L −→ L, σ(v0, v1, v2) = (v1, v2, v0),

� : L −→ L, �(v0, v1, v2) = (v0, v2, v1),

τ : L −→ L, τ(v0, v1, v2) = −(v0, v1, v2) + ϑ. (9)

The groupG contains the subgroup of translations (also denoted byT )

{L −→ L : v �→ v+ u|u ∈ T }

generated byσ2τστ andστσ2τ

σ2τστ(v0, v1, v2) = (v0, v1, v2) + (−1,1,0),

στσ2τ(v0, v1, v2) = (v0, v1, v2) + (−1,0,1). (10)
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It is known[12] that the C–C bond length in the case of a graphene sheet is 1.44Å. If we
use the honeycomb latticeL as a mathematical model for a graphene sheet then we have to
multiply the position vectors of the points of the lattice by the constanta = 1.44

√
6/2 in

order to get their lengths in̊A.
Consider the Hilbert space (l2(L), 〈·, ·〉), where

l2(L) =
{
ψ : L −→ C

∣∣∣∣∣
∑
v∈L

|ψ(v)|2 < ∞
}
,

〈ψ1, ψ2〉 =
∑
v∈L

ψ̄1(v)ψ2(v) (11)

and the unitary representation ofG in l2(L) defined by

g : l2(L) −→ l2(L), (gψ)(v) = ψ(g−1v). (12)

Let ε be a real number, andγ0, γ1, γ2 be three complex numbers. The linear operator

H : l2(L) −→ l2(L), (Hψ)(v) = εψ(v) +
2∑

j=0

γ(v, vj)ψ(vj), (13)

where

γ(v, vj) =
{
γj if ν(v) = 1,

γ̄j if ν(v) = −1
(14)

is a self-adjoint operator

〈Hψ1, ψ2〉 = ε
∑
v∈L

ψ̄1(v)ψ2(v) +
2∑

j=0

∑
v∈L

γ̄(v, vj)ψ̄1(vj)ψ2(v)

= ε
∑
v∈L

ψ̄1(v)ψ2(v) +
2∑

j=0

∑
v∈L

γ(v, vj)ψ̄1(v)ψ2(vj) = 〈ψ1, Hψ2〉.

The Hamiltonian used in the tight-binding description of� bands in 2D graphite, with only
first-neighbour C–C interaction, has the form(13).

Theorem 1. For anyk = (k0, k1, k2) ∈ E the real numbers
E±(k) = ε± |γ0 eik0a + γ1 eik1a + γ2 eik2a| (15)

belong to the spectrum of H.

Proof. The function

ϕ : L −→ C, ϕ(v) =
{
α for v ∈ T,
β for v ∈ T+ ϑ,
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whereα, β are two constants, is invariant under any translationu ∈ T

ϕ(v+ u) = ϕ(v) for all v ∈ L.

The Bloch type function

ψk : L −→ C, ψk(v) = ϕ(v) ei〈k,v〉a (16)

belonging to an extension of the spacel2(L) satisfies the relationHψk = Eψk if and only
if (α, β) is a solution of the system of equations

εα+ (γ0 eik0a + γ1 eik1a + γ2 eik2a)β = Eα,

(γ̄0 e−ik0a + γ̄1 e−ik1a + γ̄2 e−ik2a)α+ εβ = Eβ.

This system has non-trivial solutions if and only if

∣∣∣∣∣ ε− E γ0 eik0a + γ1 eik1a + γ2 eik2a

γ̄0 e−ik0a + γ̄1 e−ik1a + γ̄2 e−ik2a ε− E

∣∣∣∣∣ = 0,

that is, if and only ifE is one of the numbersE±(k).

The origin on the energy axis is usually chosen such thatε = 0. If γ0 = γ1 = γ2 = γ is a
real positive number thenH is aG-invariant self-adjoint operator and its spectrum contains
for eachk ∈ E the numbers±E(k), where

E(k) = γ|eik0a + eik1a + eik2a|
= γ

√
3 + 2 cos(k0 − k1)a+ 2 cos(k1 − k2)a+ 2 cos(k2 − k0)a. (17)

The relation(17) allows us to extend the functionE : E −→ R to a periodic function
E : R3 −→ R

E(k0, k1, k2) = E

(
k0 + 2π

a
, k1, k2

)
= E

(
k0, k1 + 2π

a
, k2

)

= E

(
k0, k1, k2 + 2π

a

)
(18)

with the property

E(k0, k1, k2) = E(k0 + α, k1 + α, k2 + α) for allα ∈ R.

The corresponding first Brillouin zone is the hexagonal set (Fig. 2)

B =
{

(k0, k1, k2) ∈ E
∣∣∣∣−2π

3a
≤ ki ≤ 2π

3a

}
(19)

(certain points lying on the frontier ofB are equivalent).
The intervals [−3γ,0] = {−E(k)|k ∈ B} and [0,3γ] = {E(k)|k ∈ B} correspond to the

valence� and the conduction�∗ energy bands, respectively. The graphene sheet is a con-
ductor since the gap between these bands is null.
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SinceE(k) can be written as

E(k) = γ
√

(cosk0a+ cosk1a+ cosk2a)2 + (sink0a+ sink1a+ sink2a)2,

we haveE(k) ≥ 0, and the only points ofB with E(k) = 0 are

±
(

2π

3a
,−2π

3a
,0

)
, ±

(
2π

3a
,0,−2π

3a

)
, ±

(
0,

2π

3a
,−2π

3a

)
, (20)

that is, the vertices of the Brillouin zone (usually denoted byK) [10].
It is known that the Fermi level for a graphene sheet occurs at theK points. The function

E : R3 −→ R is not differentiable at these points. We have, for example,

lim
k0→2π/3a

E(k0,−2π/3a,0) − 0

k0 − 2π/3a
= γ lim

k0→2π/3a

√
2 + 2 cos(k0a+ π/3)

k0 − 2π/3a
= 2γ

lim
k0→2π/3a

| cos(k0a/2 + π/6)|
k0 − 2π/3a

(21)

whence

lim
k0→2π/3a
k0>2π/3a

E(k0,−2π/3a,0) − 0

k0 − 2π/3a
= γa, lim

k0→2π/3a
k0<2π/3a

E(k0,−2π/3a,0) − 0

k0 − 2π/3a
= −γa.

The functionE : R3 −→ R is differentiable at any pointkwith E(k) �= 0, and

∂E

∂k0
(k) = γ

−a sin(k0 − k1)a+ a sin(k2 − k0)a√
3 + 2 cos(k0 − k1)a+ 2 cos(k1 − k2)a+ 2 cos(k2 − k0)a

, (22)

etc. The stationary points lying in the Brillouin zoneB are

(0,0,0), ±
(

2π

3a
,− π

3a
,− π

3a

)
, ±

(
− π

3a
,

2π

3a
,− π

3a

)
,

±
(

− π

3a
,− π

3a
,

2π

3a

)
,

that is, the center (a maximum point, denoted byΓ ) and the middle of the edges of the
Brillouin zone (saddle points, denoted byM).

3. Chiral single-wall carbon nanotubes

A single-wall carbon nanotube can be visualized as the structure obtained by rolling a
graphene sheet such that the endpointsO andA of a translation vector�OA are folded one
onto the other (Fig. 1). The geometric and physical properties of the obtained nanotube
depend on this vector, called thechirality of the tubule and represented in our approach
by an elementc ∈ T. Without loss of generality, we can restrict us to the tubules with
c0 > c1 ≥ c2. In the casec1 = c2 we have anarmchair tubule, and in the casec1 = 0 a
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Fig. 1. The honeycomb lattice and the partition defined by a vectorc ∈ T.

zig-zagtubule. The nanotubes with 0�= c1 �= c2 are calledchiral nanotubes. The diameter
of the nanotube of chiralityc is ‖c‖a/π.

After the graphene sheet rolling, the points. . . , v− 2c, v− c, v, v+ c, v+ 2c, . . . are
folded one onto the other, for anyv = (v0, v1, v2) ∈ L. Thus, each point of the set

[v0, v1, v2] = v+ Zc = {(v0 + jc0, v1 + jc1, v2 + jc2)|j ∈ Z} (23)

describes the same point of the carbon nanotube of chiralityc. Each rational number is a
class of equivalent fractions, called its representatives. In a similar way, for each point of a
carbon nanotube we have an infinite number of possibilities to describe it in our model. A
mathematical expression containing the coordinates of a point is well defined only if it does
not depend on the representative we choose. We describe the atomic positions on a carbon
nanotube by using the subset

Lc =
{

[v0, v1, v2] ∈ Z
3

Zc

∣∣∣∣ v0 + v1 + v2 ∈ {0; 1}
}
. (24)

of the factor space

Z
3

Zc
= {[v] = (v0, v1, v2) + Zc|v0, v1, v2 ∈ Z} (25)

as a mathematical model. One can remark thatLc is well defined since the condition
v0 + v1 + v2 ∈ {0; 1} we impose to [v0, v1, v2] does not depend on the representative we
choose. Indeed, (v0 + jc0) + (v1 + jc1) + (v2 + jc2) = v0 + v1 + v2 for all j ∈ Z.

Each point [v] ∈ Lc has threenearest neighbours, namely, [v0], [v1], [v2], and sixnext-
to-nearest neighbours, namely, [v01], [v10], [v12], [v21], [v20], [v02].

A symmetry transformation of the honeycomb latticeL −→ L : v �→ gv defines the
symmetry transformationLc −→ Lc : [v] �→ [gv] of the carbon nanotubeLc if

[v] = [u] =⇒ [gv] = [gu],
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that is, if

v− u ∈ Zc =⇒ gv− gu ∈ Zc.

Theorem 2. The transformations

gw : Lc −→ Lc, gw[v] = [v+ w], τ : Lc −→ Lc, τ[v] = [−v+ ϑ] (26)

are symmetry transformation ofLc for all w ∈ T.

Proof. We havev− u ∈ Zc =⇒ (v+ w) − (u+ w) = v− u ∈ Zc, andv− u ∈ Zc =⇒
(−v+ ϑ) − (−u+ ϑ) = u− v ∈ Zc.

Let n = gcd{c0, c1, c2} be the greatest common divisor ofc0, c1, c2, and letc = nc′,
that is,c′0 = c0/n, c′1 = c1/n andc′2 = c2/n. The transformationgc′ represents a rotation
of angle 2π/n of the nanotube with respect to its axis. Since (c1 − c2)c0 + (c2 − c0)c1 +
(c0 − c1)c2 = 0, the vectorw = (c1 − c2, c2 − c0, c0 − c1) is orthogonal toc, and the cor-
responding transformationgw is a pure translation, that is, a translation in the direction of
the nanotube symmetry axis. The vectorb = (1/R)(c1 − c2, c2 − c0, c0 − c1), where

R = gcd{c1 − c2, c2 − c0, c0 − c1} =
{
n if c′1 − c′2 �∈ 3Z,

3n if c′1 − c′2 ∈ 3Z
(27)

defines the shortest pure translation ofLc.
From c0 + c1 + c2 = 0, we get (c1 − c2)2 + (c2 − c0)2 + (c0 − c1)2 = 3(c2

0 + c2
1 +

c2
2), that is,R2‖b‖2 = 3‖c‖2, whence

q = 1

R
(c2

0 + c2
1 + c2

2) ∈ nZ. (28)

For anyw ∈ T the projections ofw onc andb can be written as

〈w, c〉
||c||2 c =

(
w1

c1 − c0

R
+ w2

c2 − c0

R

)
c

q
,

〈w, b〉
||b||2 b =

(
w1

c2

n
− w2

c1

n

) b

q′ ,

where q′ = q/n. It is well known that in the case of two integer numbersη,µ ∈ Z
with gcd{η,µ} = 1 there existα, β ∈ Z with αη+ βµ = 1. Since gcd{(c1 − c0)/R, (c2 −
c0)/R} = 1 and gcd{c2/n, c1/n} = 1 it follows that the projection ofT on c is Zc/q and
the projection ofT onb isZb/q′. Letω ∈ T be the shortest vector with

〈ω, b〉
‖b‖2 b = b

q′ . (29)

If Lc is a chiral nanotube then its symmetry groupGc is generated by the transformations
gc′ , gω andτ (additional symmetry operations, namely, mirror and glide planes occur only
in the case of armchair and zig-zag nanotubes). More than that, for any [v] ∈ Lc there exist
s ∈ Z, m ∈ {0,1, . . . , n− 1} andp ∈ {0,1} uniquely determined such that

[v] = τpgsωg
m
c′ [0,0,0]. (30)
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The usual description of the atomic positions of the atoms forming a carbon nanotube
[15,16] is based on this remark, and the set

{(s,m, p)|s ∈ Z,m ∈ {0,1, . . . , n− 1}, p ∈ {0,1}} (31)

is used as a mathematical model.
The subgroup̃Gc ofGc generated bygc′ andgω is a commutative index-2 subgroup, and

gnc′ = I, gq
′
ω = gb, whereI is the transformationI[v] = [v] for all [v] ∈ Lc. The irreducible

representations of̃Gc are one-dimensional and can be described in terms of generators as
[5]

T(κ,m)(gc′ ) = e−i2πm/n, wherem ∈ {0,1, . . . , n− 1},

T(κ,m)(gω) = e−iκa/q′
, whereκ ∈

[
0,

2πq′

a

)
. (32)

The irreducible representations ofGc can be obtained from the irreducible representations
of G̃c by using the index-2 subgroup induction.

Consider the Hilbert space (l2(Lc), 〈·, ·〉), where

l2(Lc) =

ψ : Lc −→ C

∣∣∣∣∣∣
∑
v∈Lc

|ψ(v)|2 < ∞

 , 〈ψ1, ψ2〉 =

∑
v∈Lc

ψ̄1(v)ψ2(v)

(33)

and the unitary representation ofGc in l2(Lc) defined by

g : l2(Lc) −→ l2(Lc), (gψ)[v] = ψ(g−1[v]). (34)

If ε is a real number andγ0, γ1, γ2 are three complex numbers, then the linear operator

H : l2(Lc) −→ l2(Lc), (Hψ)[v] = εψ[v] +
2∑

j=0

γ(v, vj)ψ[vj] (35)

with γ(v, vj) defined by(14), is a self-adjoint operator.

Theorem 3. For anyk = (k0, k1, k2) ∈ E satisfying the relation

〈k, c〉 = k0c0 + k1c1 + k2c2 ∈
(

2π

a

)
Z (36)

the real numbers

E±(k) = ε± |γ0 eik0a + γ1 eik1a + γ2 eik2a| (37)

belong to the spectrum of H.

Proof. Fork ∈ E satisfying(36)we have

v− u ∈ Zc =⇒ ϕ(v) ei〈k,v〉a = ϕ(u) ei〈k,u〉a
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Fig. 2. The first Brillouin zoneB (left) and the setBc in casen = 4 (right).

and hence the Bloch type function

ψk : Lc −→ C, ψk[v] = ϕ(v) ei〈k,v〉a (38)

is well defined. IfE ∈ {E+(k), E−(k)} then there exists a non-null function of this form
satisfying the relationHψk = Eψk.

If γ0, γ1, γ2 are real thenH isGc-invariant. Indeed, sincegc′vj = (gc′v)j, gωvj = (gωv)j

and τvj = (τv)j we havegHg−1 = H , for any g ∈ Gc. Denoting 〈k, c〉 = 2mπ/a and
〈k, ω〉 = κ/q′ we get

(gc′ψk)[v] = ϕ(v) ei〈k,v−c′〉a = e−i〈k,c′〉aψk[v] = e−i2mπ/nψk[v],

(gωψk)[v] = ϕ(v) ei〈k,v−ω〉a = e−i〈k,ω〉aψk[v] = e−iκa/q′
ψk[v],

(τψk)[v] = ϕ(τv) ei〈k,−v+ϑ〉a =
(
ϕ(τv)

ϕ(v)

)
eik0aψ−k[v] (39)

that is, the subspace generated byψk andψ−k isGc-invariant. More than that, these relations
allow us[5] to classify the eigenstatesψk by using the quantum numbersmandκ. The set
(Fig. 2)

Bc =


k ∈ E

∣∣∣∣∣∣∣∣
〈k, c〉 = 2mπ

a
withm ∈ {0,1, . . . , n− 1}

〈k, ω〉 = κ

q′ with κ ∈
[
0,

2q′π
a

)

 . (40)

contains ak corresponding to each class. The conductionm-band{
E+(k)|〈k, c〉 = 2mπ

a
, 〈k, ω〉 ∈

[
0,

2πq′

a

)}
(41)

and the valencem-band{
E−(k)|〈k, c〉 = 2mπ

a
, 〈k, ω〉 ∈

[
0,

2πq′

a

)}
(42)

can easily be determined by using(37). A graphic representation of these conduction bands
can be found in[5].

The relation(36) defines a family of equidistant straight lines orthogonal toc with
the distance between neighbouring lines equal toδ = 2π/a‖c‖. Since the length of the
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projection of the vector (2π/3a,−2π/3a,0) onc is 2π(c0 − c1)/3a‖c‖ = (c0 − c1)δ/3, the
K points belong to the straight lines(36) if and only if c0 − c1 ∈ 3Z.

The Hamiltonian used in the tight-binding description ofπ bands inLc, with only first-
neighbour C–C interaction, has the form(35). Except for very small diameter nanotubes,
the constantsγ0, γ1, γ2 keep almost the same values as in the case of a graphene sheet
[1,16]. Neglecting the effects of the curvature of the graphite sheet, we can assumeε = 0,
γ0 = γ1 = γ2 = γ ∈ (0,∞), and we get the energy levels

E±(k) = ±γ
√

3 + 2 cos(k0 − k1)a+ 2 cos(k1 − k2)a+ 2 cos(k2 − k0)a. (43)

From the form of the surfaceE(k) [12], it follows that the gap between the valence and
conduction bands is given by:

5Ec = min
k∈Bc

E+(k) − max
k∈Bc

E−(k) = 2 min
k∈Bc

E(k) (44)

and we have5Ec = 0 if and only ifc0 − c1 ∈ 3Z. Therefore[7,16], the nanotubeLc is a con-
ductor ifc0 − c1 ∈ 3Z, and a semiconductor ifc0 − c1 �∈ 3Z. The minimum mink∈Bc E(k)
is achieved[12] at a point lying on a straight line(36) in the vicinity of a pointK.

In the case of a magnetic field parallel to the nanotube axis the Hamiltonian also has
the form(35), but γ0 = γ eiβc0a, γ1 = γ eiβc1a, γ2 = γ eiβc2a, whereβ is a real constant
describing the magnetic field strength threading the nanotube[9]. Choosingε = 0, γ ∈
(0,∞), we get the energy levels

E
mag
± (k) = ±γ|ei(k0+βc0)a + ei(k1+βc1)a + ei(k2+βc2)a| = E±(k + βc) (45)

for anyk satisfying(36). From this relation it follows that the presence of a magnetic field
parallel to the nanotube axis can modify drastically the electronic properties of the nanotube,
and this modification depends essentially on the nanotube chirality[9].

4. Concluding remarks

The alternate description presented in this paper offers certain formal advantages and is
significantly different from the usual one. We think that it can be used as a complementary
description, and may stimulate the interest of mathematicians in the fascinating geometry of
carbon nanotubes. We have re-obtained some known results[5,6,8,9,11,12,16]concerning
the chiral carbon nanotubes in order to illustrate the proposed approach.

Since our model is a factor space, we have to verify the independence of the representative
(v0, v1, v2) we choose for [v0, v1, v2] in the case of any mathematical object we consider
onLc. This is not an inconvenience for our approach but a useful criterion when we look
for mathematical objects with possible geometric or physical significance.
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